Fluidizable Catalysts for Hydrogen Production from Biomass Pyrolysis/Steam Reforming

K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet

May 19, 2003

Relevance/Objective

Develop and demonstrate technology to produce hydrogen from biomass at \$2.90/kg plant gate price based on 750 t/day by 2010. By 2015: be competitive with gasoline.

Technical Challenges

- Improve reforming catalysts
 - Accept flexible feedstocks
- Improve catalyst regeneration

Process Concept

Reforming: $CxHyOz + H_2O(g) \rightarrow H_2 + xCO$

Water gas shift: $H_2O + CO \longrightarrow CO_2 + H_2$

Gasification: $C + H_2O(g) \longrightarrow COx + H_2$

Problem: Catalyst Attrition

Approach: Drivers and Impacts

- Feedstock complexity requires fluidized catalysts
- Industrial reforming catalysts exist for fixed bed processes. Industrial catalysts attrit when fluidized.
- Catalyst loss from fines causes significant performance, cost, and environmental impacts
- ► New markets for robust fluidizable catalysts
 - Lower Ni or non-Ni compositions
- ➤ New catalysts required for:
 - Flexible feedstock processing
 - Lower reforming temperatures

Approach/Fluidizable Catalysts

Identify/test best industrial reforming catalysts (naptha)

Identify/test "off the shelf" particulate aluminas for use as catalyst supports in fluidized bed reactors

Formulate, evaluate and optimize multifunctional, multicomponent catalysts made from these supports

Evaluate renewable feedstocks

Fluidizable Catalyst Development Timeline **FY01** 03 04 05 06 07 80 02 09 Fluidizable Supports (bubbling bed-BB, circulating bed-CB) **Choose best CB support** BB Identify industrial materials Assess attrition rate Characterize properties Improve/modify support preparations/CoorsTek **Catalyst Development** Develop/test/optimize BB/CB catalysts Characterize catalysts Develop lower temperature catalysts Assess non-Ni catalysts ■ Non-Ni catalyst Rapid screen microreactor Design/modify existing system Completed reactor Choose/make catalyst compositions Screen catalysts Optimize compositions **Kinetics/Deactivation Mechanisms** Add pyrolysis microreactor capability Completed réactor Coking and gasification Water gas shift Reforming Deactivation (S, CI) Reactivation **Catalyst Design for Varied Feedstocks** Pyrolyzed biomass liquids and vapors Waste grease (S) **Optimized catalyst** Waste plastics (CI) Waste textiles Co-processing **Industrial Collaborations** CoorsTek Ceramics/Carboceramics Sud Chemie **Industry prepares catalyst** Industry/catalyst scale up

Economic Impact of Catalyst Attrition

tor per hr						
		Catalyst				
Co	st \$/hr ²	Attrition				
Best of the Industrial Catalysts						
0.6	19.20					
0.7	22.40					
Best of the Industrial Supports Tested						
0.01	0.03					
0.0	0.00					
NREL Catalysts						
0.005	0.015					
	Co sts 0.6 0.7 Tested 0.01 0.0	Cost \$/hr ² sts 0.6 0.7 22.40 Tested 0.01 0.03 0.00 0.00				

¹ with Ni after methanol reforming

² NREL and industrial catalyst costs are the same \$32.00/lb. Cost per day calculated from amount of catalyst lost from reactor per hour of use.

Catalyst Improvements: K2O Improves Gasification

CATALYST	Wt % NiO	Wt % MgO	Wt % K ₂ O
CAT 10	2.0	0.2	Wt % K ₂ O 0.07
CAT 11	2.0	1.0	0.08
CAT 12	4.0	2.0	0.09

Milestone: Improve catalyst gasification performance for pyrolysis liquid reforming

Catalyst Improvements (NREL vs. Commercial C 11)

Comparing Feedstocks

Accomplishments/Progress

- Developed novel fluidizable reforming catalysts with CoorsTek Ceramics
- Evaluated performance of 16 catalysts for 24 hrs with pyrolysis oil-derived feedstocks
- Improved reforming activity (compared to commercial catalyst)
- Prepared a 100 lb batch of catalyst for the GA demonstration project
- Evaluating S-tolerant catalysts with waste grease

Collaborations/Technology Transfer

- CoorsTek Ceramics Developing fluidizable supports
- Sud Chemie Reforming catalyst composition
- GE Power Systems Fluidizable catalysts

- Article
- Record of Invention

Plans/Future Milestones

Goal: Design efficient fluidizable catalysts to produce H₂ from varied feedstocks

- Improve catalyst gasification and WGS activity Develop lower temperature reforming catalysts
- Evaluate different feedstocks (pyrolysis vapors, waste grease, plastics) Understand deactivation mechanisms (S, CI) Develop poison tolerant catalysts per feedstock
- Prepare/evaluate non-nickel catalysts
- Evaluate new CoorsTek supports (Zr/Al₂O₃) for circulating/bubbling reactors
- Modify/use rapid catalyst screening reactor
- Expand industrial participation in support/catalyst development

Responses to FY02 Review

- Commercial reforming catalysts attrit (fall apart) when fluidized
- 3 of the best naptha reforming catalysts suffered losses10 wt% per day (need < 0.5 wt%/day)
- ➤ NREL catalyst composition based on commercial naptha reforming catalyst composition (Sud Chemie)
- ➤ Industrial reforming catalysts are for fixed bed use. New market is driving CoorsTek participation. IP in progress (composition of matter)

Challenges

- Real, complex feedstocks
- On-line comprehensive analysis
- Novel fluidizable catalysts
- Long term testing (>200 h)

